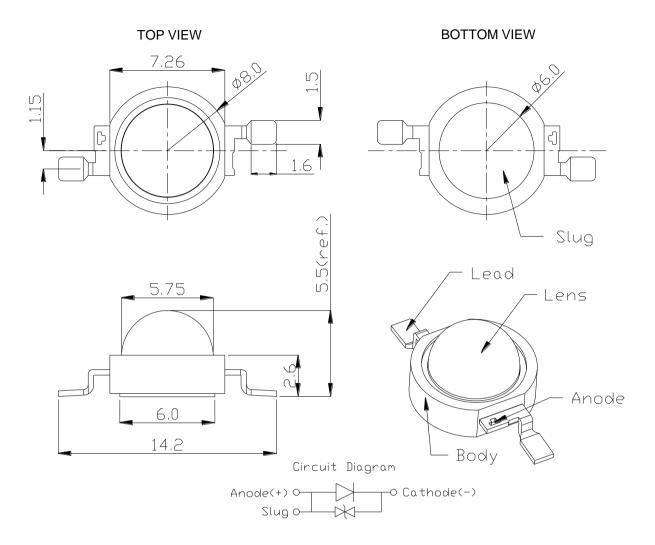


ProLight PM2B-2LKx-SD 2W Infrared 940 Power LED Technical Datasheet Version: 1.0

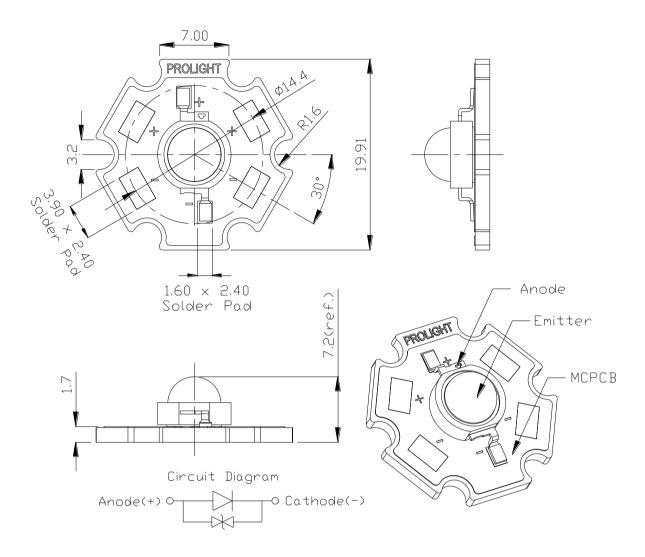

Features

- Instant light (less than 100ns)
- Lead free reflow soldering
- RoHS compliant
- Cool beam, safe to the touch
- Superior ESD protection

Typical Applications

- CCTV
- Wireless communication

Emitter Mechanical Dimensions



Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.20mm.
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

^{*}The appearance and specifications of the product may be modified for improvement without notice.

Star Mechanical Dimensions

Notes:

- 1. Slots in aluminum-core PCB for M3 or #4 mounting screw.
- 2. Electrical interconnection pads labeled on the aluminum-core PCB with "+" and "-" to denote positive and negative, respectively. All positive pads are interconnected, as are all negative pads, allowing for flexibility in array interconnection.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.20mm.
- 6. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

^{*}The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics at 1000mA, T_J = 25°C

Radiation Color		Part Number		Radiometric Power (mW)	
Pattern	Emitter		Star	Minimum	Typical
Lambertian	Infrared 940	PM2B-2LKE-SD	PM2B-2LKS-SD	515	660

- ProLight maintains a tolerance of ± 10% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 1000mA, $T_J = 25$ °C

Calan	Forward Voltage V _F (V)			Thermal Resistance
Color	Min.	Тур. Мах.		Junction to Slug (°C/W)
Infrared 940	1.5	1.9	2.3	8

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 1000mA, T_J = 25°C

				Total included Angle	Viewing Angle
Color	Peak Wavelength λ _P Min. Typ. Max.			(degrees) $\theta_{0.90V}$	(degrees) 2 θ _{1/2}
Infrared 940	925 nm	940 nm	955 nm	180	130

• ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

Absolute Maximum Ratings

Parameter	Infrared 940	
DC Forward Current (mA)	1000	
Peak Pulsed Forward Current (mA)	1500 (less than 1/10 duty cycle@1KHz)	
Average Forward Current (mA)	1000	
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7)	±4000V (Class III)	
LED Junction Temperature	120°C	
Operating Board Temperature at Maximum DC Forward Current	-40°C - 90°C	
Storage Temperature	-40°C - 120°C	
Soldering Temperature	JEDEC 020c 260°C	
Allowable Reflow Cycles	3	
Reverse Voltage	Not designed to be driven in reverse bias	

Radiometric Power Bin Structure

Color	Bin Code	Minimum Radiometric Power (mW)	Maximum Radiometric Power (mW)	Available Color Bins
	R	515	635	All
Infrared 940	S	635	755	[1]
	Т	755	875	[1]

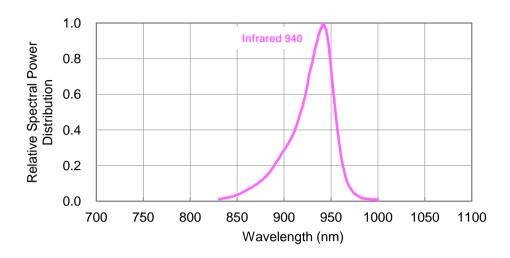
- ProLight maintains a tolerance of ± 10% on flux and power measurements.
- The flux bin of the product may be modified for improvement without notice.
- ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

Peak Wavelength Bin Structure

Color	Bin Code	Minimum Peak Wavelength (nm)	Maximum Peak Wavelength (nm)
Infrared 940	1	925	955

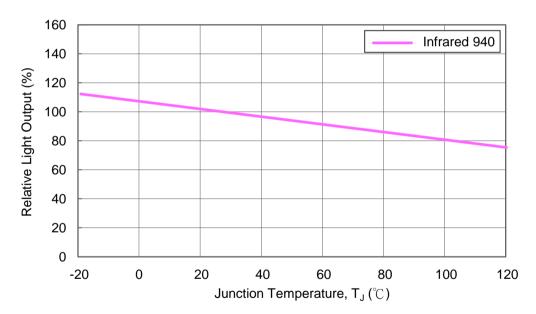
• ProLight maintains a tolerance of ± 1nm for peak wavelength measurements.

Forward Voltage Bin Structure

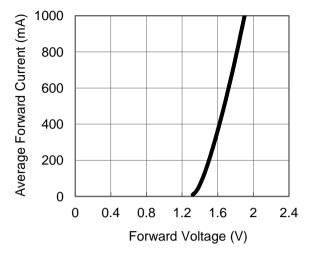

Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	E	1.5	1.6
	F	1.6	1.7
	G	1.7	1.8
Infrared 040	Н	1.8	1.9
Infrared 940	J	1.9	2.0
	K	2.0	2.1
	L	2.1	2.2
	М	2.2	2.3

ullet ProLight maintains a tolerance of \pm 0.1V for Voltage measurements.

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.


Color Spectrum, $T_J = 25^{\circ}C$

1. Infrared 940



Light Output Characteristics

Relative Light Output vs. Junction Temperature at 1000mA

Forward Current Characteristics, T_J = 25°C

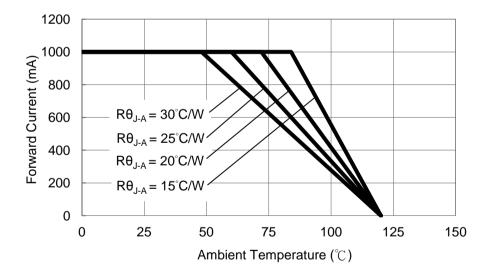
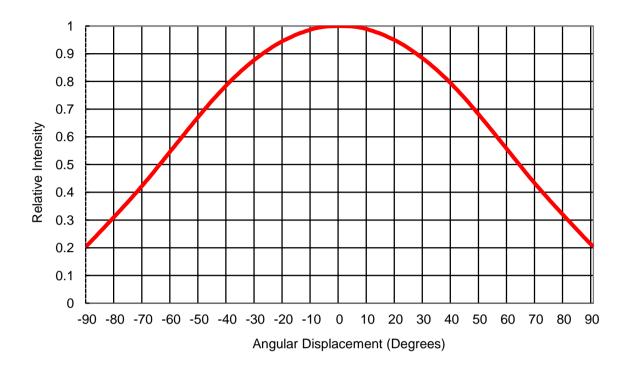

1.2 1.0 1.0 1.0 0.8 0.6 0.6 0.4 0.2 0.0 0 200 400 600 800 1000 Forward Current (mA)

Fig 1. Forward Current vs.
Forward Voltage for Infrared 940.

Fig 2. Relative Radiometric Power vs. Forward Current for Infrared 940 at T_.=25°C maintained.


Ambient Temperature vs. Maximum Forward Current

1. Infrared 940 ($T_{JMAX} = 120$ °C)

Typical Representative Spatial Radiation Pattern

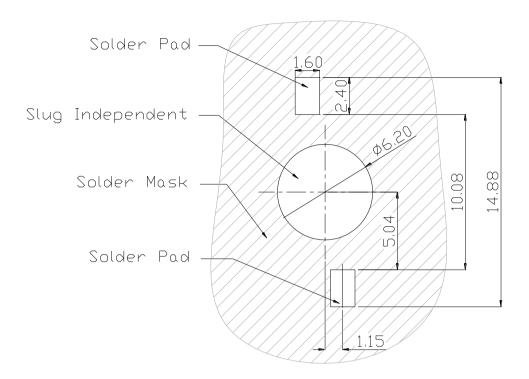
Lambertian Radiation Pattern

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Operating Life (RTOL)	20 0, 1F = Max 20 (Note 1)	1000 110013	14010 2
Wet High Temperature	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Operating Life (WHTOL)			
Wet High Temperature	85°C/85%RH, non-operating	1000 hours	Note 2
Storage Life (WHTSL)	oo o/oo/oran, non operating	1000 Hodio	11010 2
High Temperature	110°C, non-operating	1000 hours	Note 2
Storage Life (HTSL)	Tro e, non operating	1000 110010	Note 2
Low Temperature	-40°C, non-operating	1000 hours	Note 2
Storage Life (LTSL)	10 0, non operating	1000 110010	11010 2
Non-operating	-40°C to 120°C, 30 min. dwell,	200 cycles	Note 2
Temperature Cycle (TMCL)	<5 min. transfer	200 040.00	
Non-operating	-40°C to 120°C, 20 min. dwell,	200 cycles	Note 2
Thermal Shock (TMSK)	<20 sec. transfer	200 0yolos	14010 2
Mechanical Shock	1500 G, 0.5 msec. pulse,		Note 3
Wideriamoai Criook	5 shocks each 6 axis		11010 0
Natural Drop	On concrete from 1.2 m, 3X		Note 3
	40,000,4011,1		
Variable Vibration	10-2000-10 Hz, log or linear sweep rate,		Note 3
Frequency	20 G about 1 min., 1.5 mm, 3X/axis		
Solder Heat Resistance	260°C ± 5°C, 10 sec.		Note 3
(SHR)			
Solderability	Steam age for 16 hrs., then solder dip		Solder coverage
	at 260°C for 5 sec.		on lead

Notes

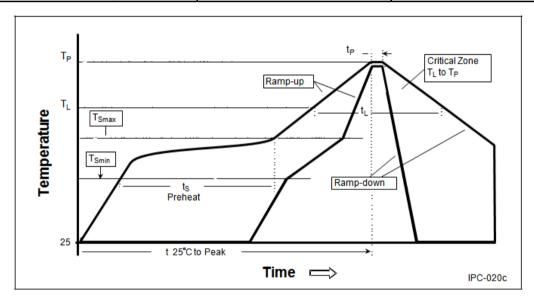
1. Depending on the maximum derating curve.


2. Criteria for judging failure

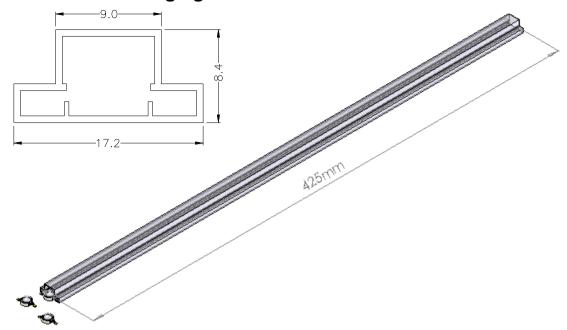
Item	Test Condition	Criteria for Judgement	
item	rest Condition	Min.	Max.
Forward Voltage (V _F)	I _F = max DC	-	Initial Level x 1.1
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7	-

^{*} The test is performed after the LED is cooled down to the room temperature.

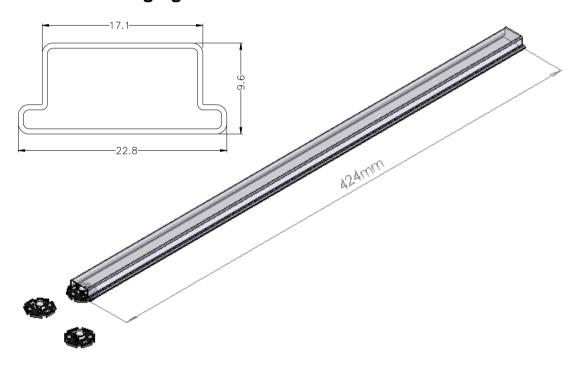
3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.


Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate $(T_{Smax}$ to $T_P)$	3°C / second max.	3°C / second max.
Preheat		
– Temperature Min (T_{Smin})	100°C	150°C
– Temperature Max (T_{Smax})	150°C	200°C
- Time (t _{Smin} to t _{Smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T_L)	183°C	217°C
– Time (t _L)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T _P)	240°C	260°C
Time Within 5°C of Actual Peak Temperature (t _P)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.



- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the
 characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Tube Packaging

Star Tube Packaging

Notes:

- 1. Emitter 50 pieces per tube and Star 20 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.
- **Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

- Storage
 - Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.
- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- The LEDs are sensitive to electrostatic discharge. Appropriate ESD protection measures
 must be taken when working with the LEDs. Non-compliance with ESD protection measures
 may lead to damage or destruction of the LEDs.
- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/